Calculation of x-ray scattering patterns from nanocrystals at high x-ray intensity

نویسندگان

  • Malik Muhammad Abdullah
  • Zoltan Jurek
  • Sang-Kil Son
  • Robin Santra
چکیده

We present a generalized method to describe the x-ray scattering intensity of the Bragg spots in a diffraction pattern from nanocrystals exposed to intense x-ray pulses. Our method involves the subdivision of a crystal into smaller units. In order to calculate the dynamics within every unit, we employ a Monte-Carlo-molecular dynamics-ab-initio hybrid framework using real space periodic boundary conditions. By combining all the units, we simulate the diffraction pattern of a crystal larger than the transverse x-ray beam profile, a situation commonly encountered in femtosecond nanocrystallography experiments with focused x-ray free-electron laser radiation. Radiation damage is not spatially uniform and depends on the fluence associated with each specific region inside the crystal. To investigate the effects of uniform and non-uniform fluence distribution, we have used two different spatial beam profiles, Gaussian and flattop.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing an Optimized Method for Obtaining X-ray Diffraction Patterns of Biological Tissues

Introduction Individual X-Ray diffraction patterns of biological tissues are obtained via interference of coherent scattering with their electrons. Many scientists have distinguished normal and cancerous breast tissue, bone density, and urinary stone types using the X-Ray diffraction patterns resulting from coherent scattering. The goal of this study was to introduce an optimized method for obt...

متن کامل

Bi-functional NaLuF4:Gd3+/Yb3+/Er3+ nanocrystals: hydrothermal synthesis, optical and magnetic properties

Magnetic-fluorescent lanthanide doped sodium lutetium fluoride (NaLuF4:Yb3+/Er3+/Gd3+) nanocrystals were synthesized via facile hydrothermal method by varying concentration of Gd3+. Powder X-ray powder diffraction (PXRD), scanning electron microscopy (SEM),transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), p...

متن کامل

Application of small angle X-ray scattering (SAXS) for differentiation between normal and cancerous breast tissues

ABSTRACT Background: Coherent scattering leads to diffraction effects and especially constructive interferences. Theseinterferences carry some information about the molecular structure of the tissue. As breast cancer isthe most widespread cancer in women, this project evaluated the application of small angleX-ray scattering (SAXS) for differentiation between normal and cancerous breast tissues....

متن کامل

Acquiring molecular interference functions of X-ray coherent scattering for breast tissues by combination of simulation and experimental methods

Background: Recently, it has been indicated that X-ray coherent scatter from biological tissues can be used to access signature of tissue. Some scientists are interested in studying this effect to get early detection of breast cancer. Since experimental methods for optimization are time consuming and expensive, some scientists suggest using simulation. Monte Carlo (MC) codes are the best...

متن کامل

Preparation of ZnO Nanocrystals with Desired Morphology from Coordination Polymers through a Solid-state Decomposition Route

One-dimensional (1D) coordination polymer, [Zn(4,4´-bpy)(H2O)4](ADC).4H2O (1) (4,4´-bpy = 4,4´-bipyridine and H2ADC = acetylenedicarboxylic acid), and three-dimensional (3D) metal-organic framework (MOF), Zn(ADC)2.(HTEA)2(2) (HTEA = triethylamine) were prepared at room temperature. The compounds were characterized by single-crystal X-ray diffraction and powder X-ray diffraction (PXRD) analyses....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016